
1. Introduction
With disasters occurring at the nexus of the built-natural-social environments (Mileti,  1999; Peek & 
Guikema,  2021), recent natural hazards have highlighted the need for disaster resilient communities (Koliou 
et  al.,  2018). Increasing community resilience has gained traction in recent years with local stakeholders, 
national, and global entities alike addressing community resilience and disaster risk reduction (e.g., NIST, 2016a; 
OSSPAC, 2013; SPUR, 2009; UNDRR, 2015). Simultaneously, however, complexities of increasing commu-
nity resilience in an uncertain future are being identified. These complexities stem from a variety of sources 
and can include accelerating human activities, increased uncertainty in the built-natural-social environments, 
including climate change, and increased complexity of infrastructure systems themselves (Chester et al., 2021; 
Spies et al., 2014). Population growth, urban change, and a changing climate are expected to further contribute 
to increased exposure and societal losses associated with natural hazards in both the immediate and long-term 
future (Bilskie et al., 2022; Cremen et al., 2022; Hemmati et al., 2020; Neumann et al., 2015). As a result, the 
outcomes of hazard mitigation plans are often difficult to fully envision, with biased policies leading to increased 
vulnerability of marginalized populations, potentially widening already existent inequities (Peek et al., 2020).

Abstract This paper presents a new coupled urban change and hazard consequence model that considers 
population growth, a changing built environment, natural hazard mitigation planning, and future acute hazards. 
Urban change is simulated as an agent-based land market with six agent types and six land use types. Agents 
compete for parcels with successful bids leading to changes in both urban land use—affecting where agents 
are located—and structural properties of buildings—affecting the building's ability to resist damage to natural 
hazards. IN-CORE, an open-source community resilience model, is used to compute damages to the built 
environment. The coupled model operates under constraints imposed by planning policies defined at the 
start of a simulation. The model is applied to Seaside, Oregon, a coastal community in the North American 
Pacific Northwest subject to seismic-tsunami hazards emanating from the Cascadia Subduction Zone. Ten 
planning scenarios are considered including caps on the number of vacation homes, relocating community 
assets, limiting new development, and mandatory seismic retrofits. By applying this coupled model to the 
testbed community, we show that: (a) placing a cap on the number of vacation homes results in more visitors 
in damaged buildings, (b) that mandatory seismic retrofits do not reduce the number of people in damaged 
buildings when considering population growth, (c) polices diverge beyond year 10 in the model, indicating 
that many policies take time to realize their implications, and (d) the most effective policies were those that 
incorporated elements of both urban planning and enforced building codes.

Plain Language Summary Natural hazards negatively impact communities resulting in significant 
infrastructure damages. Natural hazard mitigation planning attempts to reduce these damages and modeling can 
be used to measure how effective different mitigation plans can be. A new modeling framework is presented 
that accounts for population growth, a changing built environment, natural hazard mitigation planning, and 
future hazards. The model is applied to a testbed community with a large tourist population that is exposed 
to earthquake and tsunami hazards. Using this model, we consider different combinations of policies such 
as limiting the number of vacation homes in the community, relocating community assets, limiting new 
development, and enforcing building codes. Interestingly, we show that while placing a cap on the number 
of vacation homes does free up housing for full time residents, this also results in more visitors in damaged 
buildings. It is also shown how even with building codes in place, population growth contributes to an increased 
number of people in damaged buildings. Lastly, we show how the most effective policies incorporate elements 
of both urban planning and building codes.
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Given these challenges and complexities, modeling and simulation have been 
identified as a means to inform disaster theory and understand emerging 
phenomena (Mostafavi & Ganapati, 2021). Subsequently, the use of simula-
tion has proven effective to evaluate how natural hazard mitigation plans and 
policy can help improve community resilience (Nofal & van de Lindt, 2021; 
Talebiyan & Mahsuli, 2018; Wang et al., 2019). While many of these simu-
lation efforts provide useful scenarios for natural hazard mitigation planning, 
they often consider static, present-day representations of the built-natural-so-
cial environments despite their dynamic nature.

There has, however, been a recent shift toward considering disaster resilience 
under a more dynamic and future-oriented lens (Cremen et al., 2022; Galasso 
et  al.,  2021; Hemmati et  al.,  2020). To this end, there is a need to situate 
the simulation of disaster resilience within appropriate temporal settings 
given that both disasters and the adoption of mitigation plans happen over an 
extended period of time ranging from months to years. The dynamic nature 
of the built and social environments within disaster resilience simulation 
can be captured by coupling urban growth and change models with hazard 
consequence models. Figure 1 shows a conceptual diagram of this coupling. 

The time scale shown is in decades, and the y-axis shows a “Metric of Interest.” Example metrics could include 
the number of habitable homes, number of residents with electricity, etc. Policies influence how these metrics 
evolve over time and, while not shown here, these metrics could also decrease. At some point in the future, an 
extreme  event may occur resulting in damages, losses, and recovery. The overall goal of this type of modeling 
is to evaluate how policies affect the metric of interest relative to the status quo during non-disaster conditions 
and how these policies affect the resilience trajectory (initial damage and recovery) following an extreme event.

While it is common to find models to evaluate policies for either non-disaster growth or damage-recovery follow-
ing a disaster, there are few comprehensive models that evaluate both in a consistent manner. Table 1 provides a 
review of models and papers divided into three groups: (a) urban growth and change models, (b) hazard conse-
quence models, and (c) coupled urban change and hazard consequence models. It should be emphasized that 
the models and papers in Table 1 are not intended to be an exhaustive list as this convergence of disciplines is a 
rapidly growing field.

As shown in Table 1, modeling urban change can take on many forms ranging from cellular automata (Chaudhuri 
& Clarke, 2013; White & Engelen, 1993) to agent-based modeling (Huang et al., 2014; Parker & Filatova, 2008). 
The former, cellular automata is typically inductive and calibrated based on historic patterns, whereas the latter, 
agent-based modeling seeks to model real-world processes (Parker et al., 2012). Modeling land-cover, land-use 
change, and urban change dynamics has an extensive history (e.g., Miller et al., 2004; Parker & Filatova, 2008 
for detailed reviews).

On the hazard consequence side, there has been extensive research into simulating the impact that natural hazards 
have on the built- and social-environments. These can include infrastructure damages and losses, recovery and 
restoration processes, and/or modeling of social impacts. Recently, there have been efforts to transfer this research 
into deployable models that communities can utilize for resilience planning (e.g., Deierlein et al., 2021; van de 
Lindt et al., 2018).

The coupling of urban change and hazard consequence models has increased in recent years as researchers are 
recognizing that future projections of the built- and social-environments are important to consider for mitigation 
planning. As indicated in Table 1, this convergence of disciplines is expanding rapidly, and the papers referenced 
herein are non-exhaustive.

This paper thus presents a new coupled urban change and hazard consequence model that considers popula-
tion growth, a changing built environment, natural hazard mitigation planning, and future acute hazards. Urban 
change is modeled via simulation of a land market whereas immediate post-disaster damages are modeled using 
IN-CORE, an opensource software for modeling community resilience (van de Lindt et al., 2018). The coupled 
model is applied to Seaside, Oregon, a testbed community in the North American Pacific Northwest considering 

Figure 1. Situating infrastructure resilience within a larger temporal setting 
by coupling urban growth and change modeling with hazard consequence 
modeling.
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Model group Paper
Urban 
change Earthquake Flood Hurricane Tornado Tsunami Model description/notes Model name

Urban growth and 
change

White and 
Engelen (1993)

𝐴𝐴 ✓ Early cellular automata model 
of urban change

Berry et al. (1996)𝐴𝐴 ✓ Socioeconomic model 
influences transition 
probability matrix, 
influences land use

LUCAS

Waddell (2002)𝐴𝐴 ✓ Real estate market modeling 
choices of households, 

businesses, real estate, etc.

UrbanSim

Hunt and 
Abraham (2003)

𝐴𝐴 ✓ Used for simulating spatial 
economic systems; can be 
applied to urban land use 

change

PECAS

Brown and 
Robinson (2006)

𝐴𝐴 ✓ Residential choice where 
agents select grid space 

maximizing utility

SLUCE/SOME

Bolte et al. (2007)𝐴𝐴 ✓ Land use change model for 
alternative future evaluation 

of policies

Envision/
EvoLand

Filatova 
et al. (2009)

𝐴𝐴 ✓ Residential choice with agent 
buying/selling mechanisms

ALMA

Filatova 
et al. (2011)

𝐴𝐴 ✓ Residential choice with agent 
buying/selling mechanisms 

for coastal area

ALMA-C

Magliocca 
et al. (2011)

𝐴𝐴 ✓ Coupled housing and land 
market

CHALMS

Chaudhuri and 
Clarke (2013)

𝐴𝐴 ✓ Cellular automata model that 
started out as wildfire 

spread model

SLEUTH

Hazard Consequence McLaren 
et al. (2008)

𝐴𝐴 ✓ Early regional-level earthquake 
risk analysis software

MAEVIS

van de Lindt 
et al. (2018)

𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Regional-level natural hazard 
damage, loss, and recovery

IN-CORE

FEMA (2021a) 𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Regional-level natural hazard 
damage, loss, and recovery; 

GIS-based

HAZUS

Deierlein 
et al. (2021)

𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Regional-level natural hazard 
damage, loss, and recovery

SimCenter - R2D

Urban growth and 
change + Hazard 
Consequence

Jain et al. (2005)𝐴𝐴 ✓ 𝐴𝐴 ✓ Forecast urban change as 
proportional to population 
and consider hurricane risk

French (2012) 𝐴𝐴 ✓ 𝐴𝐴 ✓ Forecast urban growth using 
per capita multipliers and 

focus on nonstructural 
damages from earthquakes

Filatova (2015) 𝐴𝐴 ✓ 𝐴𝐴 ✓ Empirical land market and 
consider flood risk as in/out 

of flood zone

RHEA

Dubbelboer 
et al. (2017)

𝐴𝐴 ✓ 𝐴𝐴 ✓ Simulate land market for flood 
insurance evaluation

Table 1 
Review of: (a) Urban Growth/Change Models, (b) Hazard Consequence Models, and (c) Coupled Urban Change and Hazard Consequence Models



Earth’s Future

SANDERSON ET AL.

10.1029/2022EF003059

4 of 20

Table 1 
Continued

Model group Paper
Urban 
change Earthquake Flood Hurricane Tornado Tsunami Model description/notes Model name

Jenkins et al. (2017)𝐴𝐴 ✓ 𝐴𝐴 ✓ Agent-based model of land 
use change for insurance 

evaluation

Sleeter et al. (2017)𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Apply LUCAS model and 
consider earthquake/
tsunami exposure at 

regional scale

Mills et al. (2018)𝐴𝐴 ✓ 𝐴𝐴 ✓ Use Envision model to evaluate 
coastal hazard policies 

informed by stakeholder 
engagement

Chang et al. (2019)𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Urbanization follows simple 
rules based on policy; 

consider both earthquake 
and flood risk

Haer et al. (2019)𝐴𝐴 ✓ 𝐴𝐴 ✓ Agent-based model of land use 
change for disaster policy 

evaluation

Haer et al. (2020)𝐴𝐴 ✓ 𝐴𝐴 ✓ Agent-based model of land use 
change for exploring safe 

development paradox

Sarica et al. (2020)𝐴𝐴 ✓ 𝐴𝐴 ✓ Apply SLEUTH model and 
consider buildings exposed 

to earthquake hazard

Calderón and 
Silva (2021)

𝐴𝐴 ✓ 𝐴𝐴 ✓ Multi-agent system with 
agents defining preferences 

for land use to change; 
consider earthquake 

damage

Cremen et al. (2021)𝐴𝐴 ✓ 𝐴𝐴 ✓ Number of residences in 
future projections match 

population growth; consider 
earthquake hazards

Hemmati 
et al. (2021a)

𝐴𝐴 ✓ 𝐴𝐴 ✓ Use cellular automata and 
consider flood hazards

Hemmati 
et al. (2021b)

𝐴𝐴 ✓ 𝐴𝐴 ✓ Use cellular automata + agent-
based model and consider 

flood hazards

Mesta et al. (2022)𝐴𝐴 ✓ 𝐴𝐴 ✓ 𝐴𝐴 ✓ Apply SLEUTH model and 
consider earthquake and 
flood hazard at regional 

scale

Williams 
et al. (2022)

𝐴𝐴 ✓ 𝐴𝐴 ✓ Urbanization by using a neural 
network and consider 

hurricane hazards
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seismic-tsunami hazards associated with the Cascadia Subduction Zone (CSZ), yet is intended to be generalizable 
across different hazard types.

2. Coupled Urban Change and Hazard Consequence Model
Figure 2 shows a flowchart of the coupled urban change (gray dash-dot box) and hazard consequence model (blue 
dash-dot box). In its current form, the urban change component of the model focuses on the dynamics inside a 
community, rather than urban expansion. IN-CORE is used as the hazard consequence model and is selected due 
to its ability to model the impact of natural hazards at the parcel-level. IN-CORE is a comprehensive opensource 
ecosystem with a python package (pyIncore) available to interact with IN-CORE components and python librar-
ies. Hazard consequences, including damage to buildings, lifelines, and social impacts, can be considered using 
IN-CORE. In this paper, we consider only building damage. Each time step in the model represents 1 year. The 
overall modeling framework begins with defining an urban change policy or policies that constrain the model 
simulation (b). These policies could be unrelated to the extreme event, for example, to increase tourism, or could 
be specific to hazard mitigation, for example, to incentivize building retrofits. The model is then initiated with a 
population and housing unit allocation (c), followed by simulating population growth (d). A land market is simu-
lated (e) which updates the community description (f). This process repeats until the hazard event is triggered, at 
which the community description (f) is passed to IN-CORE. IN-CORE maps spatially explicit hazard intensity 
measures (g) to the built environment using damage models (h). This results in damages to physical infrastructure 
(i). This process is then repeated for a user-defined number of iterations. The remainder of this section provides 

Figure 2. Flowchart of the coupled urban change (gray dash-dot box on left) and hazard consequence model (blue dash-dot 
box on right).
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more detail of the coupled model. Additional model documentation and the source code is provided through the 
data availability statement.

2.1. Urban Change Policies

A policy, or combination of policies, is first identified shown as b in Figure 2. These could include both policies 
unrelated to hazard mitigation or those that specifically aim to reduce the damages and losses following natural 
hazards. Many forms of natural hazard mitigation policies exist. In general, these can be classified as modifying 
the hazard, modifying the building inventory, modifying building structural properties, or decreasing social and 
economic losses.

Modifying the hazard includes implementing both gray and green engineered solutions to reduce the intensity of 
natural hazards (Feagin et al., 2015; Saleh & Weinstein, 2016). Modifying the hazard can be costly and requires 
community buy in. In addition, this may result in the “safe-development paradox” in which individuals feel more 
protected behind engineered structures, leading to increased exposure if the structural protection were to fail 
(Haer et al., 2020).

Modifying the building inventory includes planning measures that alter the buildings present within a community 
in some form. This can include planning measures such as zoning, acquisition of damaged buildings for repeating 
hazards, and managed retreat (Han et al., 2020; Hurlimann et al., 2021). Both acquisition of damaged build-
ings and managed retreat aim to remove buildings from hazardous areas, thus altering the building inventory. 
Often a charged topic, managed retreat could disrupt the fabric and cohesive structures of communities (Hino 
et al., 2017).

Modifying building structural properties includes building codes for new development, and structural retrofits or 
elevation of flood-prone structures for existing development (Haer et al., 2019; Wang, van de, Lindt, Rosenheim, 
et al., 2021). This can often be difficult to finance and unattainable for low-income groups.

Decreasing social and economic consequences includes hazard insurance mechanisms and recovery financing 
(Alisjahbana et al., 2021; Costa et al., 2020; Dubbelboer et al., 2017). While these policies could be implemented 
pre-disaster, actions are often taken as post-disaster responses.

Of these policy classes, this paper focuses on modifying the building inventory and modifying building structural 
properties. Note that these policies focus on buildings; however additional policies could be applied to other 
aspects of the built environment. For example, a community may recognize a need for their electric power or 
water supply networks to be more resilient, thus policies and resources could be focused on these aspects of the 
built environment.

2.2. Agent-Based Modeling of Urban Land Use Change

The gray left-most box of Figure 2 is an agent-based model (ABM) of urban change developed in this paper. 
ABMs have been identified as a “boundary-object” for interdisciplinary disaster research as they can seamlessly 
integrate knowledge from multiple disciplines (Reilly et al., 2021). As such, an ABM is adopted here to both 
simulate urban change and couple the hazard consequence model. The ABM is written in Julia using Agents.jl 
(Datseris et al., 2022). Each time step in the model represents 1 year. The urban change model is initiated with a 
population and housing unit allocation to infer the initial land use, types of agents, and number of people in each 
parcel (c in Figure 2). Population projections are employed as input to the model and is updated at each annual 
time step (d in Figure 2). Agents are added to the general model space—that is, not yet in a parcel—and will be 
competing in the land market. If at the end of an iteration, the total number of people exceeds the population 
projection, agents are randomly removed from the model representing out-migration.

To drive land use changes in the model, a land market is simulated (e in Figure 2). This is an original model devel-
oped herein following the ALMA (Filatova et al., 2009) and ALMA-C (Filatova et al., 2011) models with two 
notable changes. First, the ALMA and ALMA-C models consider two agents (buyers, sellers) and two land uses 
(vacant, urban). The present work expands on this by considering six agents and six land uses. This is an impor-
tant addition to account for (a) full time resident and visitor populations, and (b) different types of development 
including single family homes, rental properties, and high occupancy development. Second, the model developed 
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here considers changes to the structural properties of buildings. This is an important feature of the model because 
it allows for coupling to the hazard consequence model.

2.2.1. Agent Types and Relations to Land Uses

The six agents and land uses are shown in Figure 3. Arrows indicate that an agent can occupy a parcel, whereas 
the colors indicate an agent owns a parcel. Agents that own parcels are responsible for retrofitting the building 
on their property if there are enforced building codes. The six land uses include (a) Unoccupied, (b) Owned 
Residen tial, (c) Rental Residential, (d) Low Occupancy Seasonal Rental, (e) High Occupancy Residential, and 
(f) High Occupancy Seasonal Rental. The six agent types are as follows.

Unoccupied Owner agents are associated with unoccupied parcels and act as “sellers” in the model. As other 
agents bid on their parcel, they review the bids selecting the maximum if it exceeds their willingness to accept 
price.

Household agents are associated with full-time residents. They either reside in a parcel or are searching for a place 
to live. They can own an “owned residential” property (i.e., a single-family home), reside in a rental residential 
(i.e., a rental home) or reside in a high occupancy residential property (i.e., an apartment/condo). The number 
of people associated with newly added household agents are randomly drawn from a gamma distribution and 
rounded to the nearest integer. A single age is randomly assigned to represent the head of the household following 
a gamma distribution and increases at each time step. Once the head of the household turns 80 years old, the agent 
is removed, and their place of residence becomes vacant. A household will randomly gain or lose one person 
following a Poisson process.

Landlord agents own parcels and rent them to household agents as “rental residential” or to visitor agents as “low 
occupancy seasonal rentals” (i.e., vacation homes) (Vinogradov et al., 2020). At any point in the simulation, land-
lord agents can choose to switch between these two land uses based on a net utility gain. Like household agents, 
landlord agents are removed from the model when they turn 80 and their property becomes vacant.

Firm agents purchase properties for development as either “high occupancy residential” (i.e., apartments) or 
“high occupancy seasonal rental” (i.e., hotels). Firm agents cannot switch between these land uses during the 
simulation. After a parcel is developed into one of these land uses, it remains as such for the remainder of the 
simulation. Firm agents do not age and are not removed from the model at any point.

Visitor agents represent a transient seasonal visitor and temporarily reside in either “low occupancy seasonal 
rental” (i.e., vacation homes) or “high occupancy seasonal rental” properties (i.e., hotels). The number of people 
associated with a visitor agent is sampled from a gamma distribution. At the start of each annual time step, all 
visitors in the model are removed and new visitor agents are reassigned to vacant low occupancy or high occu-
pancy seasonal rental parcels on a first-come, first-served basis that maximizes their utility.

The Real estate agent sets the market value of every parcel throughout the simulation. This market value is used 
to inform both the unoccupied owner agents' willingness to accept price and the cost of structural retrofits. The 

Figure 3. Agents and land uses in the urban growth and change model.
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market value of a parcel is based on a user-defined base price of land, the maximum expected utility that either 
household or visitor agents will get from the parcel, and the overall demand for parcels.

Gamma distributions are used to sample agent age and number of people in the household because they are 
right-skewed, and the support is positive. A Poisson distribution, similarly right-skewed, could alternatively be 
used to model the number of people in each household (Jarosz, 2021). A Poisson process is used to model the 
household change rates as they are commonly used to model the occurrence of events. It is assumed that each new 
high occupancy residential parcel can hold up to 20 household agents, and each high occupancy seasonal rental 
parcel can hold up to 45 visitor agents. The owned residential, rental residential, and low occupancy seasonal 
rental properties each have space for 1 occupying agent. These values are chosen based on the existing parcels in 
the testbed presented below, the total number of people, and an assumption that the model starts in equilibrium. 
An 80-year threshold is selected based on life expectancy in the US (Arias et al., 2022). Any values and distribu-
tions can be modified based on the study area and refined in future work with Supporting Information S1.

2.2.2. Agent Bidding and Changing Land Uses

Agents compete in the land market attempting to maximize their utility gained from a parcel. The land market is 
similar to that of the ALMA model; however, different land uses and agents are considered here. All utilities are 
computed using a Cobb-Douglas utility function, commonly used in urban economics (Huang et al., 2014), and 
given by:

𝑈𝑈 =

𝑛𝑛
∏

𝑖𝑖=1

𝑃𝑃
𝛼𝛼𝑖𝑖

𝑖𝑖 (1)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is a normalized value (0–100) representing either proximity to a particular feature or market pressure, 
𝐴𝐴 𝐴𝐴𝑖𝑖 weights the importance of this feature to the agent representing a preference, and n are the number of features 

considered. Spatial features can include the coast, community assets, and the central business district. The pref-
erence weights, 𝐴𝐴 𝐴𝐴𝑖𝑖 , for each agent are uncorrelated, sampled from a normal distribution, and rescaled such that 
they sum to 1. Thus, agents have heterogenous preferences. Proximity is computed using a scaled distance decay 
function, 𝐴𝐴 𝐴𝐴dist = 100 ⋅ 𝑒𝑒

−dk , with d being distance to the feature and k being a tunable parameter. Market pressure 
is based on the number of buyers and sellers, 𝐴𝐴 𝐴𝐴mkt = 100 ⋅ (0.5 ⋅ 𝜖𝜖 + 0.5) where 𝐴𝐴 𝐴𝐴 , as in the ALMA model, is 
computed as 𝐴𝐴 𝐴𝐴 = (NB − NS)∕(NB + NS) , with NB number of buyers and NS number of sellers.

Agents competing in the land market compute their willingness to pay (WTP) for the single parcel that maximizes 
their utility. Here, the WTP is modified to account for structural retrofits as:

WTP =
𝑌𝑌 ⋅ 𝑈𝑈

2

𝑏𝑏2 ⋅ 𝑈𝑈 2
(1 + 𝜖𝜖) − 𝜌𝜌 ⋅ 𝑚𝑚 (2)

where 𝐴𝐴 𝐴𝐴  is the agent budget sampled from a normal distribution—thus the agents have heterogenous economic 
statuses. 𝐴𝐴 𝐴𝐴 is the utility of the parcel as computed above, 𝐴𝐴 𝐴𝐴 represents costs of other goods and is a constant. The 
final two terms of Equation 2 were not in the ALMA model and were added to account for the additional costs an 
agent would incur if retrofits are mandatory. Here, 𝐴𝐴 𝐴𝐴 is a constant between 0 and 1 parameterized on the transition 
between structural-code levels, for example, 𝐴𝐴 𝐴𝐴 = 0.6 for a building being retrofit to moderate-seismic code. The 
market value of the parcel as provided by the real estate agent is represented as 𝐴𝐴 𝐴𝐴 .

Agents have bounded rationality and are thus only aware of a user-defined number of parcels when evaluating 
available parcels in the land market. If more than one agent is bidding on a particular parcel, than the unoccupied 
owner agent associated with that parcel reviews the bids and selects the maximum if it exceeds their willingness 
to accept price. The willingness to accept price is dynamic and informed by the real estate agent at each time 
step. It should be noted that in other land market models, agents negotiate until a final price is determined (Parker 
& Filatova, 2008). We do not consider agent negotiations as the focus of this paper is on changing land uses for 
hazard implications, rather than the final selling price of parcels. Successful bids lead to new agents owning the 
parcels and thus changes in land use. A detailed flow chart of the agent processes that result in land use change is 
provided in Supporting Information S1 (Figure S2).

As an example, consider two agents—a household and landlord—bidding on a single parcel that is owned by 
an unoccupied owner agent. Both agents compute their utility gained from the parcel using Equation 1. This is 
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based on the agents' unique preferences and properties of the parcel (distance 
to coast, distance to community assets, etc.). If the landlord bids more for the 
parcel and the bid price exceeds the unoccupied owner agent's willingness to 
accept price, then this successful bid leads to the landlord becoming the new 
owner of this parcel. The landlord, as they are associated with both rental 
residential properties and low occupancy seasonal rental properties, then 
chooses which land use the parcel will become. The landlord decides based 
on the utility gained from each land use, zoning restrictions, and any rele-
vant policies in place that may impose limitations on development. Because 
the landlord agents own properties that provide places of residence for both 
households (rental residential) and visitors (low occupancy seasonal rental), 
this parcel may then be put on the market again for agents to bid on. That is, if 
it is a rental residential property, then in the next time step household agents 
can bid on this parcel to reside there without owning the property.

The urban change model simulates annual time steps with the land market 
updating the community description (f in Figure  2). The “community 
description” describes the built and social environments. This consists of 
attributes such as urban land use, structural properties, and the number of 
people in each parcel. Structural properties of each building are necessary for 
the damage modeling.

2.3. Damage and Loss Modeling

The urban change model runs until the time of the hazard event. For this paper, the timing of the event is defined 
as a specified year in the future, rather than treating the occurrence as random. At the time of the hazard, the 
community description (f in Figure  2)—including structural properties and number of people—is passed to 
IN-CORE. Initial damages to the built environment are computed using the community description, hazard 
models, and damage models. Hazard models (g in Figure 2) are spatially explicit representations of hazard inten-
sity measures. Depending on the hazard type, IN-CORE can either generate hazard information or use externally 
generated hazard layers in the form of raster files. Damage models (h in Figure 2) map the hazard intensity 
measures to infrastructural damage. Fragility curves are used here as the damage model to determine the proba-
bility that each building exceeds a damage state for a given hazard intensity measure. Figure 4 shows an example 
of structural seismic fragility curves for light-frame wood buildings and four seismic-code levels (pre-, low-, 
moderate-, and high-code) (FEMA, 2020, 2021b). The probability of being in a discrete damage state given a 
hazard intensity is the difference between fragility curves. This is shown in Figure 4 with the text “None/Insig-
nificant,” “Moderate,” “Heavy,” and “Complete.” In the case of multiple hazards, cumulative building damage 
is computed (FEMA, 2020, 2021b). Using the fragility curves, the expected damage to a building can be deter-
mined (i in Figure 2). Additional examples of IN-CORE use applied to testbeds include: multi-hazard damages 
and losses across multiple infrastructure systems (Park et  al.,  2019; Sanderson, Cox, & Naraharisetty,  2021; 
Sanderson, Kameshwar, et  al.,  2021), chaining building and electric power network damages with economic 
models (Wang, van de, Lindt, Cutler, et al., 2021), and integrating detailed social science data with building 
damage and population dislocation models (Rosenheim et al., 2019).

3. Model Applied to a Testbed Community
3.1. Seaside, Oregon

The city of Seaside, Oregon, is utilized to demonstrate the coupled urban change and hazard consequence model. 
Seaside—shown in Figure 5—is a small coastal community in the North American Pacific Northwest, with a 
population of 7,115 people (US Census Bureau, 2022). Seaside, along with many coastal communities in this 
region, are under threat of a rupture of the CSZ. The CSZ is an approximately 1,000 km long subduction fault 
that extends between Cape Mendocino, California and Vancouver Island, Canada. Evidence suggests that the 
last full rupture of the CSZ occurred in 1,700 and is estimated to have had a moment magnitude between 8.7 
and 9.2. Some studies have estimated a 7%–11% chance that a full-margin rupture will occur between 2010 and 

Figure 4. Example structural fragility curves for W1 structures (wood light 
frame) and four seismic-code levels (pre-, low-, moderate-, and high-code). 
Fragility curves are shown for moderate (blue), heavy (purple), and complete 
(yellow) damage. The probability of being in a discrete damage state given a 
hazard intensity is the difference between fragility curves.
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2060 (Goldfinger et al., 2012). Additionally, an M9 scenario serves as the basis for the Oregon Resilience Plan 
(OSSPAC, 2013).

The economy of Seaside is tourist-oriented with large seasonal fluctuations in visitors (Raskin & Wang, 2017), 
making this an interesting testbed for other coastal towns with large tourist populations. It should be noted that the 
State of Oregon has urban growth boundaries, and for this work we focus on the dynamics inside the city, rather 
than urban expansion. The Seaside building inventory used in this work was developed from a combination of 
2012 tax assessor data, Google Street view, and a field survey (Park, Cox, & Barbosa, 2017). Initial parcel popula-
tion estimates are generated from a housing unit allocation algorithm that uses 2010 US Census data (Rosenheim 
et al., 2019). The earthquake and tsunami hazard layers used in this study are the result of a probabilistic seismic 

Figure 5. Testbed location of Seaside, Oregon showing parcels (black dots), community assets, and central business district 
(CBD; shaded central yellow region near the coast).



Earth’s Future

SANDERSON ET AL.

10.1029/2022EF003059

11 of 20

and tsunami hazard analysis for Seaside and readers are directed here for 
detailed information on the hazard generation (PSTHA; Park, Cox, Alam, & 
Barbosa, 2017; Park et al., 2019). For the damage models, spectral displace-
ment is used as the earthquake hazard intensity measure, whereas momentum 
flux is used as the tsunami hazard intensity measure. Seaside has been used as 
a testbed in previous studies to evaluate multi-hazard risks (Park et al., 2019; 
Sanderson, Kameshwar, et al., 2021), infrastructure resilience (Kameshwar 
et  al.,  2019; Sanderson, Cox, & Naraharisetty,  2021), and life-safety risks 
(Amini et al., 2022). The Seaside testbed inventory for the built environment 
and hazard layers is publicly available (Cox et al., 2022). A detailed descrip-
tion of the built environment allows for an analysis at the parcel-scale rather 
than more aggregate levels. Example hazard layers (Figure S1 in Support-
ing Information  S1), and input tables—including parameters of the distri-
butions used in the model (Tables S1 and S2)—are provided in Supporting 
Information S1. Other hazard layers can be found in Park, Cox, Alam, and 
Barbosa (2017), for example,

The population projections for both full time residents (FTR) and visitors 
(VIS) are shown in Figure 6. The full-time resident population is shown as 

both historic (Moffatt, 1996) and future projections (Portland State University Population Research Center, 2020). 
We assume the model starts in 2010 as the building inventory is from 2012 and the housing unit allocation uses 
2010 US Census data. No historic visitor population data was readily available; however, recent estimates were 
obtained from a combination of data from the Hatfield Marine Science Center, data from Oregon State Parks, 
and an Oregon visitor report (Dean Runyan Associates, 2021). It is assumed that the visitor population represents 
the peak summer nighttime population (i.e., all visitors are located in either hotels or vacation homes). A linear 
growth in the visitor population to 12,000 by 2,065 is assumed in alignment with the full-time resident population 
growth.

3.2. Planning and Building Code Scenarios

Ten scenarios, shown in Table 2, are considered as policy options, and are organized into four scenario clusters: 
(S0) status quo, (S1) planning, (S2) building codes, and (S3) a combination of planning and building codes. 
Scenario clusters S1–S3 each have three scenarios labeled a–c.

Scenario cluster S1 corresponds to planning decisions. Scenario S1a places a cap on the number of low occupancy 
seasonal rental properties. While not a hazard mitigation plan, many communities with large visitor populations 

Figure 6. Historic population data and future population projections for 
Seaside for full-time residents and visitors.

Scenario cluster Scenario abbreviation Cap on LOSR Relocate community assets
No new high occupancy 

development Owned res. Rental res. LOSR

Status Quo S0 – – – – – –

Planning S1a 500 – – – – –

S1b – East of Nec. – – – –

S1c – – HOR & HOSR – – –

Building codes S2a – – – Low Low Low

S2b – – – Moderate Moderate Moderate

S2c – – – High High High

Planning & 
building codes

S3a – East of Nec. – – – High

S3b – – HOR & HOSR – Moderate Moderate

S3c HOSR High

Note. HOR, High occupancy residential; HOSR, high occupancy seasonal rental; LOSR, Low occupancy seasonal rental; Nec, Necanicum River. Note all new high-
occupancy development must be up to high-seismic code.

Table 2 
Planning and Building Code Scenarios
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consider this to provide more housing for full-time residents (Vinogradov et al., 2020). This is modeled by not 
allowing any new low occupancy seasonal rental property into the community as long as the total number of these 
properties is above the cap. Thus, landlord agents must convert successful bids to rental residential properties. 
Scenario S1b relocates community assets that are west of the Necanicum River to the east side, further from the 
ocean and in areas with lower tsunami inundation. Agent preferences to be near community assets are captured 
in Equation 1. As such, this scenario seeks to draw agents who prefer to live near community assets to these less 
hazardous areas. Scenario S1c restricts new high occupancy development for both high occupancy residential 
and seasonal rental properties. Similar to scenarios S1a, this is simulated by simply not allowing any new high 
occupancy development.

Scenario cluster S2 corresponds to building code requirements. Scenarios S2a, S2b, and S2c requires that any 
change of land use be up to low-, moderate-, and high-seismic codes respectively. Seismic retrofit standards for 
existing buildings allow performance objectives to be less than that of new buildings (ASCE, 2014). Herein we 
assume that policies involving low and moderate-seismic code requirements (scenarios S2a and S2b) translate 
to these lower performance objectives, whereas the high-code requirement (scenario S2c) translates to the same 
performance objective as new buildings. All high occupancy buildings must conform to high-seismic code, and 
this does not differ across scenarios.

Scenario cluster S3 corresponds to both planning decisions and building code requirements. Scenarios consid-
ered here are intended to be complimentary. Scenario S3a consists of relocating community assets east of the 
Necanicum River—thus drawing agents with preferences to be near community assets to less hazardous areas—
in addition to enforcing any new low occupancy seasonal rental property conform to high-seismic code. S3b 
consists of no new high occupancy development while simultaneously enforcing that new rental residential and 
low occupancy seasonal rental properties conform to moderate-seismic code. Lastly, scenario S3c consists of no 
new high occupancy seasonal rental properties while enforcing that new low occupancy seasonal rental properties 
conform to high-seismic code.

3.3. Urban Growth and Change Results

The model was run for the 10 scenarios in Table 2 with a 500-year CSZ occurring at year 30. Each scenario was 
repeated 50 times with uncertainty propagated through the initial housing unit allocation, agent attributes, and 
ordering of agent scheduling. Figure 7 shows the evolution of the urban landscape for a portion of the city located 
on the coast and south of the CBD shown in Figure 5. Example animations are provided in Supporting Infor-
mation (Movies S1 and S2). The model considered all of Seaside; however, only a portion of the city is shown 
for clarity. The urban landscape at both the initial time step, assumed to be 2010, and at year 30 are shown in 
Figure 7 for both rental residential (top row) and low occupancy seasonal rental parcels (bottom row). The results 
of 3 scenarios from Table 2 are shown: (S0) status quo, (S1a) cap on low occupancy seasonal rental, and (S2a) 
all change of hands must conform to low seismic code. Rental residential and low occupancy seasonal rental land 
uses are shown here as they are both owned by landlord agents. The remaining land uses also evolve and are not 
shown for brevity. Each parcel is shaded according to the probability that the parcel is in the respective land use. 
The average number of FTR and visitors (VIS) located in each land use for all of Seaside are shown in the bottom 
left corner of each panel in Figure 7.

Figure 7 shows the impact that policy has on both the urban landscape and number of people. For example, a cap 
on the number of low occupancy seasonal rental properties (S1a) naturally results in a significantly lower number 
of visitors in those parcels (2,194 VIS) compared to status quo (3,617 VIS). This also increases the availability of 
housing for FTR in rental residential properties (2,510 FTR) compared to status quo (1,867 FTR).

The number of full-time residents in rental residential properties decreases for all scenarios at year 30 compared 
to at year 0. It is more advantageous for landlords to rent their properties as low occupancy seasonal rental units 
to visitor agents than it is to rent them to FTR. The remainder of the visitor residents and full-time residents are 
in the other land uses.

Figure 8 shows time series of the number of people in each land use under the same three scenarios (S0, S1a, 
S2a). Uncertainty in the model is shown via the shaded region as plus/minus one standard deviation. The impli-
cations of scenario S1a are clearly shown in Figure 8c by the decrease in number of visitors in low occupancy 
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seasonal rental properties compared to the other scenarios. Interestingly, this policy simultaneously increases the 
number of visitors in high occupancy seasonal rental properties (Figure 8e) as there is a new unmet demand for 
visitors. As expected, this scenario frees up housing for full-time residents as the landlord agents transition to 
renting properties as rental residential (Figure 8b).

Figure 7. Probability of parcels having different land uses (rows) for the initial time step (first column) and at year 30 for S0 (second column), S1a (third column), and 
S2a (fourth column). The average number of full-time residents and visitors in the respective land use are shown in the lower left corner of each plot.

Figure 8. Average number of people (plus/minus one standard deviation) in each land use for: (a) owned residential, (b) rental residential, (c) low occupancy seasonal 
rental, (d) high occupancy residential, and (e) high occupancy seasonal rental.
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Scenario S2a results in more full-time residents in high occupancy residential properties compared to the other 
scenarios (Figure 8d). This is due to the cost of retrofitting, where FTR are not able to afford as many single-family 
homes (Figure 8a). The firms then fill in this unmet demand for full time resident housing.

3.4. Damage and Loss Results

To illustrate the urban change coupling with IN-CORE, Figure 9 spatially shows the damages to the built environ-
ment and number of people in each parcel. These results are for a 500-year CSZ occurring at year 30. The parcels 
are color coded according to their expected damage state ranging between insignificant and complete. The size of 
each parcel corresponds to the number of people in that parcel for both visitors (top row) and full-time residents 
(bottom row). The two columns correspond to scenarios S0 and S1a. It assumed that this population represents 
the nighttime population in Seaside for summer months when the visitor population is high and when people are 
located in their places of residence. The larger circles in Figure 9 indicate high occupancy structures in which 
large concentrations of people are located. An emerging cluster of high occupancy seasonal rental properties can 
be seen to the north and on the waterfront in Figure 9b that is not present in 9a. As previously discussed, these 

Figure 9. Single iteration showing expected damage due to 500-year Cascadia Subduction Zone and number of people in 
each parcel for: (a) scenario S0 and visitor population, (b) scenario S1a and visitor population, (c) scenario S0 and full-time 
resident population, and (d) scenario S1a and full-time resident population. CBD is the Central Business District.
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high occupancy seasonal rental properties fill the unmet demand for visitors if a cap on low occupancy seasonal 
rentals is put in place. Not only is there a large concentration of visitors in concrete structures, but these are also 
located near to the coast and in the tsunami inundation zone. This would have implications for a potential increase 
in life safety risk depending on the type of evacuation actions taken by individuals (Mostafizi et al., 2019; Wang 
et al., 2016).

Figure 10 shows the number of people relative to status quo in parcels with a damage state greater than moderate 
for all nine planning scenarios (S1a–S3c). This figure especially demonstrates how this modeling approach can 
be used to explore the emergent behavior of planning policies. Both the number of full-time residents (panel a) 
and visitors (panel b) are shown in Figure 10. The cap on the number of low occupancy seasonal rentals (S1a) 
results in significantly more visitors in damaged buildings relative to status quo. While S1a is not a hazard miti-
gation policy, it could have unintentional negative consequences if the CSZ were to occur during summer months 
when there are large visitor populations.

Scenarios S2b and S2c requires all change of hands to retrofit to moderate and high seismic codes respectively. 
These scenarios appear to reduce the number of people in damaged buildings more than any other policy. 
However, while not shown here, these scenarios also result in the largest number of unoccupied parcels indicat-
ing that the cost of retrofitting is prohibitive for many agents. This is reflected in Equation 2 as retrofitting costs 
for these scenarios reduce agent WTP calculations below the unoccupied owner agent willingness to accept price. 
The result is a significant number of unoccupied parcels at the end of the simulation run. In general, it has been 
identified that challenges of retrofitting existing buildings include costs and occupant disruptions (NIST, 2016b).

Scenarios in cluster S3 are a combination of planning and building code requirements. Figure 10b shows that 
these scenarios result in a significant decrease in the number of visitors in damaged buildings. While not shown, 
these scenarios also result in less unoccupied parcels than status quo conditions. This indicates that effective 
mitigation planning could consider some combination of policies.

To understand the temporal aspects of the CSZ occurring at any time, rather than only year 30 as assumed in the 
previous analysis, the model was rerun for three scenarios (S0, S1a, S2a) with the CSZ occurring at 5-year inter-
vals, beginning in year 0 and ending at year 30. Figure 11 shows that the policies start to diverge beyond year 10 in 
the model, highlighting that the effects of many policies may take time to fully realize their implications. Further, 
as hazard mitigation policies aim to reduce the number of people impacted by disasters, Figure 11 highlights how 
this objective competes with population growth. While scenario S2a (low seismic code requirements) results in 
less people being in damaged parcels relative to scenario S0 (status quo), there are still more people in damaged 
parcels at year 30 than year 0. Uncertainty represented as plus/minus one standard deviation in Figure 11 does 
not overlap at the later time steps indicating that even with uncertainty there are significant deviations in policy 
implications.

Figure 10. Average number of people in parcels with a damage state greater than moderate relative to status quo conditions 
for: (a) full time residents, and (b) visitors. Error bar shows plus/minus one standard deviation.
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4. Discussion
Community resilience planning for natural hazards involves many interacting entities as disasters occur at the 
interface of the built-natural-social environments (Mileti,  1999; Peek & Guikema,  2021). Many simulation 
efforts consider static representations of the built-natural-social environments despite their dynamic and complex 
nature. The model presented in this paper attempts to capture this dynamic interplay by considering popula-
tion growth, a changing built environment, and policy choices. This model also situates the simulation of acute 
hazards within appropriate temporal settings given that these events do not occur immediately, as many simula-
tion efforts  assume, but at some point in the future.

This type of modeling framework can be extended and applied to other hazards, infrastructure systems, and 
communities. For example, many coastal communities are exposed to sea-level rise and hurricanes that also 
necessitate a future-oriented lens of the built-natural-social environments. While the agents and land uses 
presented herein were focused on a coastal community with a large transient seasonal population, additional 
agents and land uses can be considered to capture other relevant aspects of a community. For example, commer-
cial properties, business districts, and historic centers could be included to evaluate post-disaster business inter-
ruptions. Additional infrastructure systems could also be included in this type of modeling framework to evaluate 
not only building damage, but also the number of people without access to electricity or water under alternative 
futures. Additional agent behaviors could be captured in the model such as having an awareness of hazards when 
bidding on parcels.

In addition to extending this model to other hazards and infrastructure systems, insights from the Seaside test-
bed can be applied to other communities. Many coastal communities have large tourist populations and this 
work showed that placing a cap on the number of vacation homes results in more visitors in damaged buildings 
compared to status quo scenarios. This was caused by high occupancy seasonal rental properties (i.e., hotels) 
filling in a newly created unmet demand for visitors. These high occupancy structures are concrete and typically 
located in the inundation zone. This combination of factors could have negative implications for increases in life 
safety risk. In particular, this result highlights that coastal communities considering this policy and subject to 
rapid onset hazards - such as earthquakes and tsunamis—should have alternative plans in place for visitors. This 
could include well marked evacuation routes or vertical evacuation structures.

This work also highlighted that the most effective policies were those that considered elements of both urban 
planning and enforced building codes on new development. This indicates that there is no one-size-fits all solu-
tion to natural hazard mitigation planning, but rather policies should be tailored for specific communities and 
population groups. Through iterative processes, this type of modeling can be used to identify nuanced policies 
that may not be easy to initially imagine but do incorporate many different elements.

Figure 11. Number of full-time residents and visitors in parcels with a damage state greater than moderate if Cascadia 
Subduction Zone with 500-year recurrence interval were to occur at varying time steps in model.
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Given their complexities and many interacting entities, prediction of urban systems into the future is notoriously 
difficult. As such, the value of this modeling framework is not to predict the land use of individual parcels, but 
rather to provide insight into the collective behavior and emerging risks associated with planning policies. Simi-
lar efforts considering hazard exposure have involved stakeholder engagement (Mills et al., 2018). This type of 
modeling with stakeholder engagement can seed rich discussions and be used to inform policy choices.

Verification tests were performed to ensure that the model was implemented as conceptualized. These tests 
include degenerate tests, tracing agent behavior and parcel properties throughout the simulation, and setting up 
animations (Sargent, 2010). Validation has been based on both face validity and expert opinion. Calibration based 
on historic data can be performed and is beyond the scope of this paper (Ngo & See, 2012).

There are many interesting avenues for future work. First, this model could be coupled with a model of 
earthquake-tsunami life safety. As shown, some policies may put more visitors in damaged buildings that are 
located in the inundation zone. By coupling a life safety model, we could explore how policy choices impact 
life safety risk. This work could also include temporal fluctuations in visitor and full-time resident populations 
including day-night, weekday-weekend, and summer-winter. Second, this model uses existing fragility curves at 
existing seismic-code levels (pre-, low-, moderate-, and high-code). Advances in structural engineering may lead 
to buildings that are more resistant to hazard damages. Likewise, infrastructure ages and deteriorates over time, 
which was not accounted for here. Both of these could lead to temporal modifications in the fragility curves that 
are associated with buildings.

5. Conclusions
This paper presented a coupled urban change and hazard consequence model for evaluating community resil-
ience under a future-oriented lens. Urban change was modeled via simulation of a land market whereas immedi-
ate post-disaster building damage was simulated using the opensource software IN-CORE. The coupled model 
was applied to Seaside, Oregon, located in the North American Pacific Northwest considering seismic-tsunami 
hazards associated with the CSZ. By applying the coupled urban change and hazard consequence model, the 
following conclusions can be made:

1.  Policies can result in unintended negative outcomes for different population groups: It was shown that by plac-
ing a cap on the number of low occupancy seasonal rental properties in a community, more visitors were in 
damaged buildings compared to status quo conditions (Figure 10). As expected, this policy does free up more 
housing for full-time residents; however, this also highlights that additional hazard mitigation plans should be 
put in place if coastal communities pursue this option in areas that are subject to rapid onset disasters.

2.  Mandatory seismic retrofits do not reduce the number of people in damaged buildings when considering 
population growth: Three scenarios were considered in which the CSZ was simulated at 5-year intervals out 
to 30-year (status quo, a cap on vacation homes, and mandatory seismic retrofits). While the seismic retrofits 
can reduce the negative consequences of the CSZ relative to a status quo conditions, this scenario still resulted 
in an increase of total number of people impacted relative to present day conditions (Figure 11). This high-
lights the challenges of mitigation planning in areas with growing populations and that more transformative 
adaptation may be necessary.

3.  Policies take time to be fully realized: By considering the CSZ occurring at 5-year intervals from year 0 to year 
30, it was shown that the three policies diverge only after year 10 in the simulation (Figure 11). This indicates 
that many policies take time to fully realize their implications and highlights the urgency of mitigation plan-
ning in areas subject to disasters.

4.  The most effective policies were those that incorporated elements of both urban planning and mandatory 
building codes: It was shown that only enforcing building codes may reduce the number of people in damage 
buildings; however, this also results in a significant number of unoccupied parcels at the end of the model run. 
This indicates that this is not attainable for many agents and could be cost prohibitive. More effective strate-
gies that reduced the number of people in damaged buildings considered some combination of both enforced 
building codes and urban planning (Figure 10). Communities should tailor their resilience planning with no 
one-size-fits-all solution available.

Many resilience studies consider historic or static representations of the built-natural-social environments despite 
their dynamic and complex nature. The coupled urban change and hazard consequence model presented in this 
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paper provides an avenue toward planning for hazards in an uncertain future. Given urban change, population 
growth, policy choices, and a changing climate, more research should be conducted to account for the complexi-
ties that arise at the interface and future of the built-natural-social environments.

Data Availability Statement
The model used in this paper was written in Julia and python. The model source code and additional documenta-
tion contained in a Jupyter Book are available at Sanderson (2022). The Seaside testbed data inventory is availa-
ble on DesignSafe.org at Cox et al. (2022).
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